Metamath Proof Explorer


Theorem fzocongeq

Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion fzocongeq A C ..^ D B C ..^ D D C A B A = B

Proof

Step Hyp Ref Expression
1 elfzoel2 B C ..^ D D
2 elfzoel1 B C ..^ D C
3 1 2 zsubcld B C ..^ D D C
4 elfzoelz A C ..^ D A
5 elfzoelz B C ..^ D B
6 zsubcl A B A B
7 4 5 6 syl2an A C ..^ D B C ..^ D A B
8 dvdsabsb D C A B D C A B D C A B
9 3 7 8 syl2an2 A C ..^ D B C ..^ D D C A B D C A B
10 fzomaxdif A C ..^ D B C ..^ D A B 0 ..^ D C
11 fzo0dvdseq A B 0 ..^ D C D C A B A B = 0
12 10 11 syl A C ..^ D B C ..^ D D C A B A B = 0
13 9 12 bitrd A C ..^ D B C ..^ D D C A B A B = 0
14 4 zcnd A C ..^ D A
15 5 zcnd B C ..^ D B
16 subcl A B A B
17 14 15 16 syl2an A C ..^ D B C ..^ D A B
18 17 abs00ad A C ..^ D B C ..^ D A B = 0 A B = 0
19 subeq0 A B A B = 0 A = B
20 14 15 19 syl2an A C ..^ D B C ..^ D A B = 0 A = B
21 18 20 bitrd A C ..^ D B C ..^ D A B = 0 A = B
22 13 21 bitrd A C ..^ D B C ..^ D D C A B A = B