Metamath Proof Explorer


Theorem fzodif2

Description: Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021)

Ref Expression
Assertion fzodif2 N M M ..^ N + 1 N = M ..^ N

Proof

Step Hyp Ref Expression
1 fzosplitsn N M M ..^ N + 1 = M ..^ N N
2 1 difeq1d N M M ..^ N + 1 N = M ..^ N N N
3 difun2 M ..^ N N N = M ..^ N N
4 2 3 eqtrdi N M M ..^ N + 1 N = M ..^ N N
5 fzonel ¬ N M ..^ N
6 disjsn M ..^ N N = ¬ N M ..^ N
7 5 6 mpbir M ..^ N N =
8 disjdif2 M ..^ N N = M ..^ N N = M ..^ N
9 7 8 mp1i N M M ..^ N N = M ..^ N
10 4 9 eqtrd N M M ..^ N + 1 N = M ..^ N