Metamath Proof Explorer


Theorem fzodisjsn

Description: A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021)

Ref Expression
Assertion fzodisjsn A ..^ B B =

Proof

Step Hyp Ref Expression
1 disj1 A ..^ B B = x x A ..^ B ¬ x B
2 elfzoelz x A ..^ B x
3 2 zred x A ..^ B x
4 elfzolt2 x A ..^ B x < B
5 3 4 ltned x A ..^ B x B
6 5 neneqd x A ..^ B ¬ x = B
7 elsni x B x = B
8 6 7 nsyl x A ..^ B ¬ x B
9 1 8 mpgbir A ..^ B B =