Metamath Proof Explorer


Theorem fzoend

Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoend A A ..^ B B 1 A ..^ B

Proof

Step Hyp Ref Expression
1 id A A ..^ B A A ..^ B
2 elfzoel2 A A ..^ B B
3 fzoval B A ..^ B = A B 1
4 2 3 syl A A ..^ B A ..^ B = A B 1
5 1 4 eleqtrd A A ..^ B A A B 1
6 elfzuz3 A A B 1 B 1 A
7 5 6 syl A A ..^ B B 1 A
8 eluzfz2 B 1 A B 1 A B 1
9 7 8 syl A A ..^ B B 1 A B 1
10 9 4 eleqtrrd A A ..^ B B 1 A ..^ B