Metamath Proof Explorer


Theorem fzof

Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzof ..^ : × 𝒫

Proof

Step Hyp Ref Expression
1 fzssz m n 1
2 ovex m n 1 V
3 2 elpw m n 1 𝒫 m n 1
4 1 3 mpbir m n 1 𝒫
5 4 rgen2w m n m n 1 𝒫
6 df-fzo ..^ = m , n m n 1
7 6 fmpo m n m n 1 𝒫 ..^ : × 𝒫
8 5 7 mpbi ..^ : × 𝒫