| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
|
| 2 |
|
simpl1 |
|
| 3 |
|
necom |
|
| 4 |
|
nn0re |
|
| 5 |
|
nn0re |
|
| 6 |
|
ltlen |
|
| 7 |
4 5 6
|
syl2an |
|
| 8 |
7
|
bicomd |
|
| 9 |
|
elnn0z |
|
| 10 |
|
0red |
|
| 11 |
|
zre |
|
| 12 |
11
|
adantr |
|
| 13 |
5
|
adantl |
|
| 14 |
|
lelttr |
|
| 15 |
10 12 13 14
|
syl3anc |
|
| 16 |
|
nn0z |
|
| 17 |
|
elnnz |
|
| 18 |
17
|
simplbi2 |
|
| 19 |
16 18
|
syl |
|
| 20 |
19
|
adantl |
|
| 21 |
15 20
|
syld |
|
| 22 |
21
|
expd |
|
| 23 |
22
|
impancom |
|
| 24 |
9 23
|
sylbi |
|
| 25 |
24
|
imp |
|
| 26 |
8 25
|
sylbid |
|
| 27 |
26
|
expd |
|
| 28 |
3 27
|
syl7bi |
|
| 29 |
28
|
3impia |
|
| 30 |
29
|
imp |
|
| 31 |
8
|
biimpd |
|
| 32 |
31
|
exp4b |
|
| 33 |
32
|
3imp |
|
| 34 |
3 33
|
biimtrid |
|
| 35 |
34
|
imp |
|
| 36 |
2 30 35
|
3jca |
|
| 37 |
36
|
ex |
|
| 38 |
1 37
|
sylbi |
|
| 39 |
38
|
impcom |
|
| 40 |
|
elfzo0 |
|
| 41 |
39 40
|
sylibr |
|