Metamath Proof Explorer


Theorem fzofzim

Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzofzim K M K 0 M K 0 ..^ M

Proof

Step Hyp Ref Expression
1 elfz2nn0 K 0 M K 0 M 0 K M
2 simpl1 K 0 M 0 K M K M K 0
3 necom K M M K
4 nn0re K 0 K
5 nn0re M 0 M
6 ltlen K M K < M K M M K
7 4 5 6 syl2an K 0 M 0 K < M K M M K
8 7 bicomd K 0 M 0 K M M K K < M
9 elnn0z K 0 K 0 K
10 0red K M 0 0
11 zre K K
12 11 adantr K M 0 K
13 5 adantl K M 0 M
14 lelttr 0 K M 0 K K < M 0 < M
15 10 12 13 14 syl3anc K M 0 0 K K < M 0 < M
16 nn0z M 0 M
17 elnnz M M 0 < M
18 17 simplbi2 M 0 < M M
19 16 18 syl M 0 0 < M M
20 19 adantl K M 0 0 < M M
21 15 20 syld K M 0 0 K K < M M
22 21 expd K M 0 0 K K < M M
23 22 impancom K 0 K M 0 K < M M
24 9 23 sylbi K 0 M 0 K < M M
25 24 imp K 0 M 0 K < M M
26 8 25 sylbid K 0 M 0 K M M K M
27 26 expd K 0 M 0 K M M K M
28 3 27 syl7bi K 0 M 0 K M K M M
29 28 3impia K 0 M 0 K M K M M
30 29 imp K 0 M 0 K M K M M
31 8 biimpd K 0 M 0 K M M K K < M
32 31 exp4b K 0 M 0 K M M K K < M
33 32 3imp K 0 M 0 K M M K K < M
34 3 33 syl5bi K 0 M 0 K M K M K < M
35 34 imp K 0 M 0 K M K M K < M
36 2 30 35 3jca K 0 M 0 K M K M K 0 M K < M
37 36 ex K 0 M 0 K M K M K 0 M K < M
38 1 37 sylbi K 0 M K M K 0 M K < M
39 38 impcom K M K 0 M K 0 M K < M
40 elfzo0 K 0 ..^ M K 0 M K < M
41 39 40 sylibr K M K 0 M K 0 ..^ M