Metamath Proof Explorer


Theorem fzofzp1

Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzofzp1 C A ..^ B C + 1 A B

Proof

Step Hyp Ref Expression
1 elfzoel1 C A ..^ B A
2 uzid A A A
3 peano2uz A A A + 1 A
4 fzoss1 A + 1 A A + 1 ..^ B + 1 A ..^ B + 1
5 1 2 3 4 4syl C A ..^ B A + 1 ..^ B + 1 A ..^ B + 1
6 1z 1
7 fzoaddel C A ..^ B 1 C + 1 A + 1 ..^ B + 1
8 6 7 mpan2 C A ..^ B C + 1 A + 1 ..^ B + 1
9 5 8 sseldd C A ..^ B C + 1 A ..^ B + 1
10 elfzoel2 C A ..^ B B
11 fzval3 B A B = A ..^ B + 1
12 10 11 syl C A ..^ B A B = A ..^ B + 1
13 9 12 eleqtrrd C A ..^ B C + 1 A B