Metamath Proof Explorer


Theorem fzonfzoufzol

Description: If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018)

Ref Expression
Assertion fzonfzoufzol M M < N I 0 ..^ N ¬ I N M ..^ N I 0 ..^ N M

Proof

Step Hyp Ref Expression
1 elfzoel2 I 0 ..^ N N
2 zsubcl N M N M
3 2 ex N M N M
4 1 3 syl I 0 ..^ N M N M
5 4 impcom M I 0 ..^ N N M
6 5 3adant2 M M < N I 0 ..^ N N M
7 6 adantr M M < N I 0 ..^ N ¬ I 0 ..^ N M N M
8 simp3 M M < N I 0 ..^ N I 0 ..^ N
9 8 anim1i M M < N I 0 ..^ N ¬ I 0 ..^ N M I 0 ..^ N ¬ I 0 ..^ N M
10 elfzonelfzo N M I 0 ..^ N ¬ I 0 ..^ N M I N M ..^ N
11 7 9 10 sylc M M < N I 0 ..^ N ¬ I 0 ..^ N M I N M ..^ N
12 11 ex M M < N I 0 ..^ N ¬ I 0 ..^ N M I N M ..^ N
13 12 con1d M M < N I 0 ..^ N ¬ I N M ..^ N I 0 ..^ N M