Metamath Proof Explorer


Theorem fzonn0p1

Description: A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018)

Ref Expression
Assertion fzonn0p1 N 0 N 0 ..^ N + 1

Proof

Step Hyp Ref Expression
1 id N 0 N 0
2 nn0p1nn N 0 N + 1
3 nn0re N 0 N
4 3 ltp1d N 0 N < N + 1
5 elfzo0 N 0 ..^ N + 1 N 0 N + 1 N < N + 1
6 1 2 4 5 syl3anbrc N 0 N 0 ..^ N + 1