Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
fzonnsub2
Next ⟩
fzoss1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fzonnsub2
Description:
If
M < N
then
N - M
is a positive integer.
(Contributed by
Mario Carneiro
, 1-Jan-2017)
Ref
Expression
Assertion
fzonnsub2
⊢
K
∈
M
..^
N
→
N
−
M
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
elfzolt3b
⊢
K
∈
M
..^
N
→
M
∈
M
..^
N
2
fzonnsub
⊢
M
∈
M
..^
N
→
N
−
M
∈
ℕ
3
1
2
syl
⊢
K
∈
M
..^
N
→
N
−
M
∈
ℕ