Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
fzolb |
|
3 |
1 2
|
sylibr |
|
4 |
|
simpr |
|
5 |
3 4
|
eleqtrd |
|
6 |
|
elfzouz |
|
7 |
|
uzss |
|
8 |
5 6 7
|
3syl |
|
9 |
2
|
biimpri |
|
10 |
9
|
adantr |
|
11 |
|
eleq2 |
|
12 |
11
|
adantl |
|
13 |
10 12
|
mpbid |
|
14 |
|
elfzolt3b |
|
15 |
13 14
|
syl |
|
16 |
15 4
|
eleqtrrd |
|
17 |
|
elfzouz |
|
18 |
|
uzss |
|
19 |
16 17 18
|
3syl |
|
20 |
8 19
|
eqssd |
|
21 |
|
simpl1 |
|
22 |
|
uz11 |
|
23 |
21 22
|
syl |
|
24 |
20 23
|
mpbid |
|
25 |
|
fzoend |
|
26 |
|
elfzoel2 |
|
27 |
|
eleq2 |
|
28 |
27
|
eqcoms |
|
29 |
|
elfzo2 |
|
30 |
|
simpl |
|
31 |
|
simprl |
|
32 |
|
zlem1lt |
|
33 |
32
|
ancoms |
|
34 |
33
|
biimprd |
|
35 |
34
|
impancom |
|
36 |
35
|
impcom |
|
37 |
30 31 36
|
3jca |
|
38 |
37
|
expcom |
|
39 |
38
|
3adant1 |
|
40 |
39
|
a1d |
|
41 |
29 40
|
sylbi |
|
42 |
28 41
|
syl6bi |
|
43 |
42
|
com23 |
|
44 |
43
|
impcom |
|
45 |
44
|
com13 |
|
46 |
26 45
|
mpcom |
|
47 |
25 46
|
syl |
|
48 |
15 47
|
mpcom |
|
49 |
|
eluz2 |
|
50 |
49
|
biimpri |
|
51 |
|
uzss |
|
52 |
48 50 51
|
3syl |
|
53 |
|
fzoend |
|
54 |
|
eleq2 |
|
55 |
|
elfzo2 |
|
56 |
|
pm3.2 |
|
57 |
56
|
3ad2ant2 |
|
58 |
57
|
com12 |
|
59 |
58
|
3adant1 |
|
60 |
55 59
|
sylbi |
|
61 |
54 60
|
syl6bi |
|
62 |
61
|
com3l |
|
63 |
53 62
|
syl |
|
64 |
9 63
|
mpcom |
|
65 |
64
|
imp |
|
66 |
|
simpl |
|
67 |
|
simprl |
|
68 |
|
zlem1lt |
|
69 |
68
|
ancoms |
|
70 |
69
|
biimprd |
|
71 |
70
|
impancom |
|
72 |
71
|
impcom |
|
73 |
|
eluz2 |
|
74 |
66 67 72 73
|
syl3anbrc |
|
75 |
|
uzss |
|
76 |
65 74 75
|
3syl |
|
77 |
52 76
|
eqssd |
|
78 |
|
simpl2 |
|
79 |
|
uz11 |
|
80 |
78 79
|
syl |
|
81 |
77 80
|
mpbid |
|
82 |
24 81
|
jca |
|
83 |
82
|
ex |
|
84 |
|
oveq12 |
|
85 |
83 84
|
impbid1 |
|