Metamath Proof Explorer


Theorem fzoopth

Description: A half-open integer range can represent an ordered pair, analogous to fzopth . (Contributed by Alexander van der Vekens, 1-Jul-2018)

Ref Expression
Assertion fzoopth M N M < N M ..^ N = J ..^ K M = J N = K

Proof

Step Hyp Ref Expression
1 simpl M N M < N M ..^ N = J ..^ K M N M < N
2 fzolb M M ..^ N M N M < N
3 1 2 sylibr M N M < N M ..^ N = J ..^ K M M ..^ N
4 simpr M N M < N M ..^ N = J ..^ K M ..^ N = J ..^ K
5 3 4 eleqtrd M N M < N M ..^ N = J ..^ K M J ..^ K
6 elfzouz M J ..^ K M J
7 uzss M J M J
8 5 6 7 3syl M N M < N M ..^ N = J ..^ K M J
9 2 biimpri M N M < N M M ..^ N
10 9 adantr M N M < N M ..^ N = J ..^ K M M ..^ N
11 eleq2 M ..^ N = J ..^ K M M ..^ N M J ..^ K
12 11 adantl M N M < N M ..^ N = J ..^ K M M ..^ N M J ..^ K
13 10 12 mpbid M N M < N M ..^ N = J ..^ K M J ..^ K
14 elfzolt3b M J ..^ K J J ..^ K
15 13 14 syl M N M < N M ..^ N = J ..^ K J J ..^ K
16 15 4 eleqtrrd M N M < N M ..^ N = J ..^ K J M ..^ N
17 elfzouz J M ..^ N J M
18 uzss J M J M
19 16 17 18 3syl M N M < N M ..^ N = J ..^ K J M
20 8 19 eqssd M N M < N M ..^ N = J ..^ K M = J
21 simpl1 M N M < N M ..^ N = J ..^ K M
22 uz11 M M = J M = J
23 21 22 syl M N M < N M ..^ N = J ..^ K M = J M = J
24 20 23 mpbid M N M < N M ..^ N = J ..^ K M = J
25 fzoend J J ..^ K K 1 J ..^ K
26 elfzoel2 K 1 J ..^ K K
27 eleq2 J ..^ K = M ..^ N K 1 J ..^ K K 1 M ..^ N
28 27 eqcoms M ..^ N = J ..^ K K 1 J ..^ K K 1 M ..^ N
29 elfzo2 K 1 M ..^ N K 1 M N K 1 < N
30 simpl K N K 1 < N K
31 simprl K N K 1 < N N
32 zlem1lt K N K N K 1 < N
33 32 ancoms N K K N K 1 < N
34 33 biimprd N K K 1 < N K N
35 34 impancom N K 1 < N K K N
36 35 impcom K N K 1 < N K N
37 30 31 36 3jca K N K 1 < N K N K N
38 37 expcom N K 1 < N K K N K N
39 38 3adant1 K 1 M N K 1 < N K K N K N
40 39 a1d K 1 M N K 1 < N M N M < N K K N K N
41 29 40 sylbi K 1 M ..^ N M N M < N K K N K N
42 28 41 syl6bi M ..^ N = J ..^ K K 1 J ..^ K M N M < N K K N K N
43 42 com23 M ..^ N = J ..^ K M N M < N K 1 J ..^ K K K N K N
44 43 impcom M N M < N M ..^ N = J ..^ K K 1 J ..^ K K K N K N
45 44 com13 K K 1 J ..^ K M N M < N M ..^ N = J ..^ K K N K N
46 26 45 mpcom K 1 J ..^ K M N M < N M ..^ N = J ..^ K K N K N
47 25 46 syl J J ..^ K M N M < N M ..^ N = J ..^ K K N K N
48 15 47 mpcom M N M < N M ..^ N = J ..^ K K N K N
49 eluz2 N K K N K N
50 49 biimpri K N K N N K
51 uzss N K N K
52 48 50 51 3syl M N M < N M ..^ N = J ..^ K N K
53 fzoend M M ..^ N N 1 M ..^ N
54 eleq2 M ..^ N = J ..^ K N 1 M ..^ N N 1 J ..^ K
55 elfzo2 N 1 J ..^ K N 1 J K N 1 < K
56 pm3.2 N K N 1 < K N K N 1 < K
57 56 3ad2ant2 M N M < N K N 1 < K N K N 1 < K
58 57 com12 K N 1 < K M N M < N N K N 1 < K
59 58 3adant1 N 1 J K N 1 < K M N M < N N K N 1 < K
60 55 59 sylbi N 1 J ..^ K M N M < N N K N 1 < K
61 54 60 syl6bi M ..^ N = J ..^ K N 1 M ..^ N M N M < N N K N 1 < K
62 61 com3l N 1 M ..^ N M N M < N M ..^ N = J ..^ K N K N 1 < K
63 53 62 syl M M ..^ N M N M < N M ..^ N = J ..^ K N K N 1 < K
64 9 63 mpcom M N M < N M ..^ N = J ..^ K N K N 1 < K
65 64 imp M N M < N M ..^ N = J ..^ K N K N 1 < K
66 simpl N K N 1 < K N
67 simprl N K N 1 < K K
68 zlem1lt N K N K N 1 < K
69 68 ancoms K N N K N 1 < K
70 69 biimprd K N N 1 < K N K
71 70 impancom K N 1 < K N N K
72 71 impcom N K N 1 < K N K
73 eluz2 K N N K N K
74 66 67 72 73 syl3anbrc N K N 1 < K K N
75 uzss K N K N
76 65 74 75 3syl M N M < N M ..^ N = J ..^ K K N
77 52 76 eqssd M N M < N M ..^ N = J ..^ K N = K
78 simpl2 M N M < N M ..^ N = J ..^ K N
79 uz11 N N = K N = K
80 78 79 syl M N M < N M ..^ N = J ..^ K N = K N = K
81 77 80 mpbid M N M < N M ..^ N = J ..^ K N = K
82 24 81 jca M N M < N M ..^ N = J ..^ K M = J N = K
83 82 ex M N M < N M ..^ N = J ..^ K M = J N = K
84 oveq12 M = J N = K M ..^ N = J ..^ K
85 83 84 impbid1 M N M < N M ..^ N = J ..^ K M = J N = K