Metamath Proof Explorer


Theorem fzopred

Description: Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 . (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion fzopred MNM<NM..^N=MM+1..^N

Proof

Step Hyp Ref Expression
1 fzolb MM..^NMNM<N
2 fzofzp1 MM..^NM+1MN
3 1 2 sylbir MNM<NM+1MN
4 fzosplit M+1MNM..^N=M..^M+1M+1..^N
5 3 4 syl MNM<NM..^N=M..^M+1M+1..^N
6 fzosn MM..^M+1=M
7 6 3ad2ant1 MNM<NM..^M+1=M
8 7 uneq1d MNM<NM..^M+1M+1..^N=MM+1..^N
9 5 8 eqtrd MNM<NM..^N=MM+1..^N