Metamath Proof Explorer


Theorem fzopred

Description: Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 . (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion fzopred M N M < N M ..^ N = M M + 1 ..^ N

Proof

Step Hyp Ref Expression
1 fzolb M M ..^ N M N M < N
2 fzofzp1 M M ..^ N M + 1 M N
3 1 2 sylbir M N M < N M + 1 M N
4 fzosplit M + 1 M N M ..^ N = M ..^ M + 1 M + 1 ..^ N
5 3 4 syl M N M < N M ..^ N = M ..^ M + 1 M + 1 ..^ N
6 fzosn M M ..^ M + 1 = M
7 6 3ad2ant1 M N M < N M ..^ M + 1 = M
8 7 uneq1d M N M < N M ..^ M + 1 M + 1 ..^ N = M M + 1 ..^ N
9 5 8 eqtrd M N M < N M ..^ N = M M + 1 ..^ N