Metamath Proof Explorer


Theorem fzopredsuc

Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if N = M (then ( M ... N ) = { M } = ( { M } u. (/) ) u. { M } ) . (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion fzopredsuc N M M N = M M + 1 ..^ N N

Proof

Step Hyp Ref Expression
1 unidm N N = N
2 1 eqcomi N = N N
3 oveq1 M = N M N = N N
4 fzsn N N N = N
5 3 4 sylan9eqr N M = N M N = N
6 sneq M = N M = N
7 oveq1 M = N M + 1 = N + 1
8 7 oveq1d M = N M + 1 ..^ N = N + 1 ..^ N
9 6 8 uneq12d M = N M M + 1 ..^ N = N N + 1 ..^ N
10 9 uneq1d M = N M M + 1 ..^ N N = N N + 1 ..^ N N
11 zre N N
12 11 lep1d N N N + 1
13 peano2z N N + 1
14 13 zred N N + 1
15 11 14 lenltd N N N + 1 ¬ N + 1 < N
16 12 15 mpbid N ¬ N + 1 < N
17 fzonlt0 N + 1 N ¬ N + 1 < N N + 1 ..^ N =
18 13 17 mpancom N ¬ N + 1 < N N + 1 ..^ N =
19 16 18 mpbid N N + 1 ..^ N =
20 19 uneq2d N N N + 1 ..^ N = N
21 un0 N = N
22 20 21 eqtrdi N N N + 1 ..^ N = N
23 22 uneq1d N N N + 1 ..^ N N = N N
24 10 23 sylan9eqr N M = N M M + 1 ..^ N N = N N
25 2 5 24 3eqtr4a N M = N M N = M M + 1 ..^ N N
26 25 ex N M = N M N = M M + 1 ..^ N N
27 eluzelz N M N
28 26 27 syl11 M = N N M M N = M M + 1 ..^ N N
29 fzisfzounsn N M M N = M ..^ N N
30 29 adantl ¬ M = N N M M N = M ..^ N N
31 eluz2 N M M N M N
32 simpl1 M N M N ¬ M = N M
33 simpl2 M N M N ¬ M = N N
34 nesym N M ¬ M = N
35 zre M M
36 ltlen M N M < N M N N M
37 35 11 36 syl2an M N M < N M N N M
38 37 biimprd M N M N N M M < N
39 38 exp4b M N M N N M M < N
40 39 3imp M N M N N M M < N
41 34 40 syl5bir M N M N ¬ M = N M < N
42 41 imp M N M N ¬ M = N M < N
43 32 33 42 3jca M N M N ¬ M = N M N M < N
44 43 ex M N M N ¬ M = N M N M < N
45 31 44 sylbi N M ¬ M = N M N M < N
46 45 impcom ¬ M = N N M M N M < N
47 fzopred M N M < N M ..^ N = M M + 1 ..^ N
48 46 47 syl ¬ M = N N M M ..^ N = M M + 1 ..^ N
49 48 uneq1d ¬ M = N N M M ..^ N N = M M + 1 ..^ N N
50 30 49 eqtrd ¬ M = N N M M N = M M + 1 ..^ N N
51 50 ex ¬ M = N N M M N = M M + 1 ..^ N N
52 28 51 pm2.61i N M M N = M M + 1 ..^ N N