Step |
Hyp |
Ref |
Expression |
1 |
|
unidm |
|
2 |
1
|
eqcomi |
|
3 |
|
oveq1 |
|
4 |
|
fzsn |
|
5 |
3 4
|
sylan9eqr |
|
6 |
|
sneq |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq1d |
|
9 |
6 8
|
uneq12d |
|
10 |
9
|
uneq1d |
|
11 |
|
zre |
|
12 |
11
|
lep1d |
|
13 |
|
peano2z |
|
14 |
13
|
zred |
|
15 |
11 14
|
lenltd |
|
16 |
12 15
|
mpbid |
|
17 |
|
fzonlt0 |
|
18 |
13 17
|
mpancom |
|
19 |
16 18
|
mpbid |
|
20 |
19
|
uneq2d |
|
21 |
|
un0 |
|
22 |
20 21
|
eqtrdi |
|
23 |
22
|
uneq1d |
|
24 |
10 23
|
sylan9eqr |
|
25 |
2 5 24
|
3eqtr4a |
|
26 |
25
|
ex |
|
27 |
|
eluzelz |
|
28 |
26 27
|
syl11 |
|
29 |
|
fzisfzounsn |
|
30 |
29
|
adantl |
|
31 |
|
eluz2 |
|
32 |
|
simpl1 |
|
33 |
|
simpl2 |
|
34 |
|
nesym |
|
35 |
|
zre |
|
36 |
|
ltlen |
|
37 |
35 11 36
|
syl2an |
|
38 |
37
|
biimprd |
|
39 |
38
|
exp4b |
|
40 |
39
|
3imp |
|
41 |
34 40
|
syl5bir |
|
42 |
41
|
imp |
|
43 |
32 33 42
|
3jca |
|
44 |
43
|
ex |
|
45 |
31 44
|
sylbi |
|
46 |
45
|
impcom |
|
47 |
|
fzopred |
|
48 |
46 47
|
syl |
|
49 |
48
|
uneq1d |
|
50 |
30 49
|
eqtrd |
|
51 |
50
|
ex |
|
52 |
28 51
|
pm2.61i |
|