Metamath Proof Explorer


Theorem fzopth

Description: A finite set of sequential integers has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 31-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzopth NMMN=JKM=JN=K

Proof

Step Hyp Ref Expression
1 eluzfz1 NMMMN
2 1 adantr NMMN=JKMMN
3 simpr NMMN=JKMN=JK
4 2 3 eleqtrd NMMN=JKMJK
5 elfzuz MJKMJ
6 uzss MJMJ
7 4 5 6 3syl NMMN=JKMJ
8 elfzuz2 MJKKJ
9 eluzfz1 KJJJK
10 4 8 9 3syl NMMN=JKJJK
11 10 3 eleqtrrd NMMN=JKJMN
12 elfzuz JMNJM
13 uzss JMJM
14 11 12 13 3syl NMMN=JKJM
15 7 14 eqssd NMMN=JKM=J
16 eluzel2 NMM
17 16 adantr NMMN=JKM
18 uz11 MM=JM=J
19 17 18 syl NMMN=JKM=JM=J
20 15 19 mpbid NMMN=JKM=J
21 eluzfz2 KJKJK
22 4 8 21 3syl NMMN=JKKJK
23 22 3 eleqtrrd NMMN=JKKMN
24 elfzuz3 KMNNK
25 uzss NKNK
26 23 24 25 3syl NMMN=JKNK
27 eluzfz2 NMNMN
28 27 adantr NMMN=JKNMN
29 28 3 eleqtrd NMMN=JKNJK
30 elfzuz3 NJKKN
31 uzss KNKN
32 29 30 31 3syl NMMN=JKKN
33 26 32 eqssd NMMN=JKN=K
34 eluzelz NMN
35 34 adantr NMMN=JKN
36 uz11 NN=KN=K
37 35 36 syl NMMN=JKN=KN=K
38 33 37 mpbid NMMN=JKN=K
39 20 38 jca NMMN=JKM=JN=K
40 39 ex NMMN=JKM=JN=K
41 oveq12 M=JN=KMN=JK
42 40 41 impbid1 NMMN=JKM=JN=K