Metamath Proof Explorer


Theorem fzopth

Description: A finite set of sequential integers has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 31-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzopth N M M N = J K M = J N = K

Proof

Step Hyp Ref Expression
1 eluzfz1 N M M M N
2 1 adantr N M M N = J K M M N
3 simpr N M M N = J K M N = J K
4 2 3 eleqtrd N M M N = J K M J K
5 elfzuz M J K M J
6 uzss M J M J
7 4 5 6 3syl N M M N = J K M J
8 elfzuz2 M J K K J
9 eluzfz1 K J J J K
10 4 8 9 3syl N M M N = J K J J K
11 10 3 eleqtrrd N M M N = J K J M N
12 elfzuz J M N J M
13 uzss J M J M
14 11 12 13 3syl N M M N = J K J M
15 7 14 eqssd N M M N = J K M = J
16 eluzel2 N M M
17 16 adantr N M M N = J K M
18 uz11 M M = J M = J
19 17 18 syl N M M N = J K M = J M = J
20 15 19 mpbid N M M N = J K M = J
21 eluzfz2 K J K J K
22 4 8 21 3syl N M M N = J K K J K
23 22 3 eleqtrrd N M M N = J K K M N
24 elfzuz3 K M N N K
25 uzss N K N K
26 23 24 25 3syl N M M N = J K N K
27 eluzfz2 N M N M N
28 27 adantr N M M N = J K N M N
29 28 3 eleqtrd N M M N = J K N J K
30 elfzuz3 N J K K N
31 uzss K N K N
32 29 30 31 3syl N M M N = J K K N
33 26 32 eqssd N M M N = J K N = K
34 eluzelz N M N
35 34 adantr N M M N = J K N
36 uz11 N N = K N = K
37 35 36 syl N M M N = J K N = K N = K
38 33 37 mpbid N M M N = J K N = K
39 20 38 jca N M M N = J K M = J N = K
40 39 ex N M M N = J K M = J N = K
41 oveq12 M = J N = K M N = J K
42 40 41 impbid1 N M M N = J K M = J N = K