Metamath Proof Explorer


Theorem fzoshftral

Description: Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral . (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion fzoshftral M N K j M ..^ N φ k M + K ..^ N + K [˙k K / j]˙ φ

Proof

Step Hyp Ref Expression
1 fzoval N M ..^ N = M N 1
2 1 3ad2ant2 M N K M ..^ N = M N 1
3 2 raleqdv M N K j M ..^ N φ j M N 1 φ
4 peano2zm N N 1
5 fzshftral M N 1 K j M N 1 φ k M + K N - 1 + K [˙k K / j]˙ φ
6 4 5 syl3an2 M N K j M N 1 φ k M + K N - 1 + K [˙k K / j]˙ φ
7 zaddcl N K N + K
8 7 3adant1 M N K N + K
9 fzoval N + K M + K ..^ N + K = M + K N + K - 1
10 8 9 syl M N K M + K ..^ N + K = M + K N + K - 1
11 zcn N N
12 11 adantr N K N
13 zcn K K
14 13 adantl N K K
15 1cnd N K 1
16 12 14 15 addsubd N K N + K - 1 = N - 1 + K
17 16 3adant1 M N K N + K - 1 = N - 1 + K
18 17 oveq2d M N K M + K N + K - 1 = M + K N - 1 + K
19 10 18 eqtr2d M N K M + K N - 1 + K = M + K ..^ N + K
20 19 raleqdv M N K k M + K N - 1 + K [˙k K / j]˙ φ k M + K ..^ N + K [˙k K / j]˙ φ
21 3 6 20 3bitrd M N K j M ..^ N φ k M + K ..^ N + K [˙k K / j]˙ φ