Metamath Proof Explorer


Theorem fzospliti

Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzospliti A B ..^ C D A B ..^ D A D ..^ C

Proof

Step Hyp Ref Expression
1 zre D D
2 elfzoelz A B ..^ C A
3 2 adantr A B ..^ C D A
4 3 zred A B ..^ C D A
5 lelttric D A D A A < D
6 1 4 5 syl2an2 A B ..^ C D D A A < D
7 6 orcomd A B ..^ C D A < D D A
8 elfzole1 A B ..^ C B A
9 8 adantr A B ..^ C D B A
10 9 a1d A B ..^ C D A < D B A
11 10 ancrd A B ..^ C D A < D B A A < D
12 elfzolt2 A B ..^ C A < C
13 12 adantr A B ..^ C D A < C
14 13 a1d A B ..^ C D D A A < C
15 14 ancld A B ..^ C D D A D A A < C
16 11 15 orim12d A B ..^ C D A < D D A B A A < D D A A < C
17 7 16 mpd A B ..^ C D B A A < D D A A < C
18 elfzoel1 A B ..^ C B
19 18 adantr A B ..^ C D B
20 simpr A B ..^ C D D
21 elfzo A B D A B ..^ D B A A < D
22 3 19 20 21 syl3anc A B ..^ C D A B ..^ D B A A < D
23 elfzoel2 A B ..^ C C
24 23 adantr A B ..^ C D C
25 elfzo A D C A D ..^ C D A A < C
26 3 20 24 25 syl3anc A B ..^ C D A D ..^ C D A A < C
27 22 26 orbi12d A B ..^ C D A B ..^ D A D ..^ C B A A < D D A A < C
28 17 27 mpbird A B ..^ C D A B ..^ D A D ..^ C