Metamath Proof Explorer


Theorem fzosplitpr

Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion fzosplitpr B A A ..^ B + 2 = A ..^ B B B + 1

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 a1i B A 2 = 1 + 1
3 2 oveq2d B A B + 2 = B + 1 + 1
4 eluzelcn B A B
5 1cnd B A 1
6 add32r B 1 1 B + 1 + 1 = B + 1 + 1
7 4 5 5 6 syl3anc B A B + 1 + 1 = B + 1 + 1
8 3 7 eqtrd B A B + 2 = B + 1 + 1
9 8 oveq2d B A A ..^ B + 2 = A ..^ B + 1 + 1
10 peano2uz B A B + 1 A
11 fzosplitsn B + 1 A A ..^ B + 1 + 1 = A ..^ B + 1 B + 1
12 10 11 syl B A A ..^ B + 1 + 1 = A ..^ B + 1 B + 1
13 fzosplitsn B A A ..^ B + 1 = A ..^ B B
14 13 uneq1d B A A ..^ B + 1 B + 1 = A ..^ B B B + 1
15 unass A ..^ B B B + 1 = A ..^ B B B + 1
16 15 a1i B A A ..^ B B B + 1 = A ..^ B B B + 1
17 df-pr B B + 1 = B B + 1
18 17 eqcomi B B + 1 = B B + 1
19 18 a1i B A B B + 1 = B B + 1
20 19 uneq2d B A A ..^ B B B + 1 = A ..^ B B B + 1
21 14 16 20 3eqtrd B A A ..^ B + 1 B + 1 = A ..^ B B B + 1
22 9 12 21 3eqtrd B A A ..^ B + 2 = A ..^ B B B + 1