Metamath Proof Explorer


Theorem fzosplitprm1

Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 25-Jun-2022)

Ref Expression
Assertion fzosplitprm1 A B A < B A ..^ B + 1 = A ..^ B 1 B 1 B

Proof

Step Hyp Ref Expression
1 simp1 A B A < B A
2 peano2zm B B 1
3 2 3ad2ant2 A B A < B B 1
4 zltlem1 A B A < B A B 1
5 4 biimp3a A B A < B A B 1
6 eluz2 B 1 A A B 1 A B 1
7 1 3 5 6 syl3anbrc A B A < B B 1 A
8 fzosplitpr B 1 A A ..^ B - 1 + 2 = A ..^ B 1 B 1 B - 1 + 1
9 7 8 syl A B A < B A ..^ B - 1 + 2 = A ..^ B 1 B 1 B - 1 + 1
10 zcn B B
11 1cnd B 1
12 2cnd B 2
13 10 11 12 subadd23d B B - 1 + 2 = B + 2 - 1
14 2m1e1 2 1 = 1
15 14 oveq2i B + 2 - 1 = B + 1
16 13 15 eqtr2di B B + 1 = B - 1 + 2
17 16 oveq2d B A ..^ B + 1 = A ..^ B - 1 + 2
18 npcan1 B B - 1 + 1 = B
19 10 18 syl B B - 1 + 1 = B
20 19 eqcomd B B = B - 1 + 1
21 20 preq2d B B 1 B = B 1 B - 1 + 1
22 21 uneq2d B A ..^ B 1 B 1 B = A ..^ B 1 B 1 B - 1 + 1
23 17 22 eqeq12d B A ..^ B + 1 = A ..^ B 1 B 1 B A ..^ B - 1 + 2 = A ..^ B 1 B 1 B - 1 + 1
24 23 3ad2ant2 A B A < B A ..^ B + 1 = A ..^ B 1 B 1 B A ..^ B - 1 + 2 = A ..^ B 1 B 1 B - 1 + 1
25 9 24 mpbird A B A < B A ..^ B + 1 = A ..^ B 1 B 1 B