Metamath Proof Explorer


Theorem fzosplitsni

Description: Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzosplitsni B A C A ..^ B + 1 C A ..^ B C = B

Proof

Step Hyp Ref Expression
1 fzosplitsn B A A ..^ B + 1 = A ..^ B B
2 1 eleq2d B A C A ..^ B + 1 C A ..^ B B
3 elun C A ..^ B B C A ..^ B C B
4 elsn2g B A C B C = B
5 4 orbi2d B A C A ..^ B C B C A ..^ B C = B
6 3 5 syl5bb B A C A ..^ B B C A ..^ B C = B
7 2 6 bitrd B A C A ..^ B + 1 C A ..^ B C = B