Metamath Proof Explorer


Theorem fzosplitsnm1

Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018)

Ref Expression
Assertion fzosplitsnm1 A B A + 1 A ..^ B = A ..^ B 1 B 1

Proof

Step Hyp Ref Expression
1 eluzelz B A + 1 B
2 1 zcnd B A + 1 B
3 2 adantl A B A + 1 B
4 ax-1cn 1
5 npcan B 1 B - 1 + 1 = B
6 5 eqcomd B 1 B = B - 1 + 1
7 3 4 6 sylancl A B A + 1 B = B - 1 + 1
8 7 oveq2d A B A + 1 A ..^ B = A ..^ B - 1 + 1
9 eluzp1m1 A B A + 1 B 1 A
10 1 adantl A B A + 1 B
11 peano2zm B B 1
12 uzid B 1 B 1 B 1
13 peano2uz B 1 B 1 B - 1 + 1 B 1
14 10 11 12 13 4syl A B A + 1 B - 1 + 1 B 1
15 elfzuzb B 1 A B - 1 + 1 B 1 A B - 1 + 1 B 1
16 9 14 15 sylanbrc A B A + 1 B 1 A B - 1 + 1
17 fzosplit B 1 A B - 1 + 1 A ..^ B - 1 + 1 = A ..^ B 1 B 1 ..^ B - 1 + 1
18 16 17 syl A B A + 1 A ..^ B - 1 + 1 = A ..^ B 1 B 1 ..^ B - 1 + 1
19 1 11 syl B A + 1 B 1
20 19 adantl A B A + 1 B 1
21 fzosn B 1 B 1 ..^ B - 1 + 1 = B 1
22 20 21 syl A B A + 1 B 1 ..^ B - 1 + 1 = B 1
23 22 uneq2d A B A + 1 A ..^ B 1 B 1 ..^ B - 1 + 1 = A ..^ B 1 B 1
24 8 18 23 3eqtrd A B A + 1 A ..^ B = A ..^ B 1 B 1