Metamath Proof Explorer


Theorem fzoss2

Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoss2 N K M ..^ K M ..^ N

Proof

Step Hyp Ref Expression
1 eluzel2 N K K
2 peano2zm K K 1
3 1 2 syl N K K 1
4 1zzd N K 1
5 id N K N K
6 1 zcnd N K K
7 ax-1cn 1
8 npcan K 1 K - 1 + 1 = K
9 6 7 8 sylancl N K K - 1 + 1 = K
10 9 fveq2d N K K - 1 + 1 = K
11 5 10 eleqtrrd N K N K - 1 + 1
12 eluzsub K 1 1 N K - 1 + 1 N 1 K 1
13 3 4 11 12 syl3anc N K N 1 K 1
14 fzss2 N 1 K 1 M K 1 M N 1
15 13 14 syl N K M K 1 M N 1
16 fzoval K M ..^ K = M K 1
17 1 16 syl N K M ..^ K = M K 1
18 eluzelz N K N
19 fzoval N M ..^ N = M N 1
20 18 19 syl N K M ..^ N = M N 1
21 15 17 20 3sstr4d N K M ..^ K M ..^ N