Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
fzossrbm1
Next ⟩
fzo0ss1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fzossrbm1
Description:
Subset of a half-open range.
(Contributed by
Alexander van der Vekens
, 1-Nov-2017)
Ref
Expression
Assertion
fzossrbm1
⊢
N
∈
ℤ
→
0
..^
N
−
1
⊆
0
..^
N
Proof
Step
Hyp
Ref
Expression
1
peano2zm
⊢
N
∈
ℤ
→
N
−
1
∈
ℤ
2
id
⊢
N
∈
ℤ
→
N
∈
ℤ
3
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
4
3
lem1d
⊢
N
∈
ℤ
→
N
−
1
≤
N
5
eluz2
⊢
N
∈
ℤ
≥
N
−
1
↔
N
−
1
∈
ℤ
∧
N
∈
ℤ
∧
N
−
1
≤
N
6
1
2
4
5
syl3anbrc
⊢
N
∈
ℤ
→
N
∈
ℤ
≥
N
−
1
7
fzoss2
⊢
N
∈
ℤ
≥
N
−
1
→
0
..^
N
−
1
⊆
0
..^
N
8
6
7
syl
⊢
N
∈
ℤ
→
0
..^
N
−
1
⊆
0
..^
N