Metamath Proof Explorer


Theorem fzosubel

Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel A B ..^ C D A D B D ..^ C D

Proof

Step Hyp Ref Expression
1 znegcl D D
2 fzoaddel A B ..^ C D A + D B + D ..^ C + D
3 1 2 sylan2 A B ..^ C D A + D B + D ..^ C + D
4 elfzoelz A B ..^ C A
5 4 adantr A B ..^ C D A
6 5 zcnd A B ..^ C D A
7 simpr A B ..^ C D D
8 7 zcnd A B ..^ C D D
9 6 8 negsubd A B ..^ C D A + D = A D
10 elfzoel1 A B ..^ C B
11 10 adantr A B ..^ C D B
12 11 zcnd A B ..^ C D B
13 12 8 negsubd A B ..^ C D B + D = B D
14 elfzoel2 A B ..^ C C
15 14 adantr A B ..^ C D C
16 15 zcnd A B ..^ C D C
17 16 8 negsubd A B ..^ C D C + D = C D
18 13 17 oveq12d A B ..^ C D B + D ..^ C + D = B D ..^ C D
19 3 9 18 3eltr3d A B ..^ C D A D B D ..^ C D