Metamath Proof Explorer


Theorem fzosubel2

Description: Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel2 A B + C ..^ B + D B C D A B C ..^ D

Proof

Step Hyp Ref Expression
1 fzosubel A B + C ..^ B + D B A B B + C - B ..^ B + D - B
2 1 3ad2antr1 A B + C ..^ B + D B C D A B B + C - B ..^ B + D - B
3 zcn B B
4 zcn C C
5 zcn D D
6 pncan2 B C B + C - B = C
7 6 3adant3 B C D B + C - B = C
8 pncan2 B D B + D - B = D
9 8 3adant2 B C D B + D - B = D
10 7 9 oveq12d B C D B + C - B ..^ B + D - B = C ..^ D
11 3 4 5 10 syl3an B C D B + C - B ..^ B + D - B = C ..^ D
12 11 adantl A B + C ..^ B + D B C D B + C - B ..^ B + D - B = C ..^ D
13 2 12 eleqtrd A B + C ..^ B + D B C D A B C ..^ D