Metamath Proof Explorer


Theorem fzosubel3

Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel3 A B ..^ B + D D A B 0 ..^ D

Proof

Step Hyp Ref Expression
1 simpl A B ..^ B + D D A B ..^ B + D
2 elfzoel1 A B ..^ B + D B
3 2 adantr A B ..^ B + D D B
4 3 zcnd A B ..^ B + D D B
5 4 addid1d A B ..^ B + D D B + 0 = B
6 5 oveq1d A B ..^ B + D D B + 0 ..^ B + D = B ..^ B + D
7 1 6 eleqtrrd A B ..^ B + D D A B + 0 ..^ B + D
8 0zd A B ..^ B + D D 0
9 simpr A B ..^ B + D D D
10 fzosubel2 A B + 0 ..^ B + D B 0 D A B 0 ..^ D
11 7 3 8 9 10 syl13anc A B ..^ B + D D A B 0 ..^ D