Metamath Proof Explorer


Theorem fzosumm1

Description: Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023)

Ref Expression
Hypotheses fzosumm1.1 φ N 1 M
fzosumm1.2 φ k M ..^ N A
fzosumm1.3 k = N 1 A = B
fzosumm1.n φ N
Assertion fzosumm1 φ k M ..^ N A = k M ..^ N 1 A + B

Proof

Step Hyp Ref Expression
1 fzosumm1.1 φ N 1 M
2 fzosumm1.2 φ k M ..^ N A
3 fzosumm1.3 k = N 1 A = B
4 fzosumm1.n φ N
5 fzoval N M ..^ N = M N 1
6 4 5 syl φ M ..^ N = M N 1
7 6 eqcomd φ M N 1 = M ..^ N
8 7 eleq2d φ k M N 1 k M ..^ N
9 8 biimpa φ k M N 1 k M ..^ N
10 9 2 syldan φ k M N 1 A
11 1 10 3 fsumm1 φ k = M N 1 A = k = M N - 1 - 1 A + B
12 6 sumeq1d φ k M ..^ N A = k = M N 1 A
13 eluzelz N 1 M N 1
14 fzoval N 1 M ..^ N 1 = M N - 1 - 1
15 1 13 14 3syl φ M ..^ N 1 = M N - 1 - 1
16 15 sumeq1d φ k M ..^ N 1 A = k = M N - 1 - 1 A
17 16 oveq1d φ k M ..^ N 1 A + B = k = M N - 1 - 1 A + B
18 11 12 17 3eqtr4d φ k M ..^ N A = k M ..^ N 1 A + B