Metamath Proof Explorer


Theorem fzosump1

Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses fsumm1.1 φ N M
fsumm1.2 φ k M N A
fsumm1.3 k = N A = B
Assertion fzosump1 φ k M ..^ N + 1 A = k M ..^ N A + B

Proof

Step Hyp Ref Expression
1 fsumm1.1 φ N M
2 fsumm1.2 φ k M N A
3 fsumm1.3 k = N A = B
4 eluzelz N M N
5 1 4 syl φ N
6 fzoval N M ..^ N = M N 1
7 5 6 syl φ M ..^ N = M N 1
8 7 sumeq1d φ k M ..^ N A = k = M N 1 A
9 8 oveq1d φ k M ..^ N A + B = k = M N 1 A + B
10 1 2 3 fsumm1 φ k = M N A = k = M N 1 A + B
11 fzval3 N M N = M ..^ N + 1
12 5 11 syl φ M N = M ..^ N + 1
13 12 sumeq1d φ k = M N A = k M ..^ N + 1 A
14 9 10 13 3eqtr2rd φ k M ..^ N + 1 A = k M ..^ N A + B