Metamath Proof Explorer


Theorem fzoun

Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022)

Ref Expression
Assertion fzoun B A C 0 A ..^ B + C = A ..^ B B ..^ B + C

Proof

Step Hyp Ref Expression
1 eluzel2 B A A
2 1 adantr B A C 0 A
3 eluzelz B A B
4 nn0z C 0 C
5 zaddcl B C B + C
6 3 4 5 syl2an B A C 0 B + C
7 3 adantr B A C 0 B
8 eluzle B A A B
9 8 adantr B A C 0 A B
10 nn0ge0 C 0 0 C
11 10 adantl B A C 0 0 C
12 eluzelre B A B
13 nn0re C 0 C
14 addge01 B C 0 C B B + C
15 12 13 14 syl2an B A C 0 0 C B B + C
16 11 15 mpbid B A C 0 B B + C
17 2 6 7 9 16 elfzd B A C 0 B A B + C
18 fzosplit B A B + C A ..^ B + C = A ..^ B B ..^ B + C
19 17 18 syl B A C 0 A ..^ B + C = A ..^ B B ..^ B + C