Metamath Proof Explorer


Theorem fzouzdisj

Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016)

Ref Expression
Assertion fzouzdisj A ..^ B B =

Proof

Step Hyp Ref Expression
1 elfzolt2 x A ..^ B x < B
2 1 adantr x A ..^ B x B x < B
3 eluzel2 x B B
4 3 adantl x A ..^ B x B B
5 4 zred x A ..^ B x B B
6 eluzelre x B x
7 6 adantl x A ..^ B x B x
8 eluzle x B B x
9 8 adantl x A ..^ B x B B x
10 5 7 9 lensymd x A ..^ B x B ¬ x < B
11 2 10 pm2.65i ¬ x A ..^ B x B
12 elin x A ..^ B B x A ..^ B x B
13 11 12 mtbir ¬ x A ..^ B B
14 13 nel0 A ..^ B B =