Metamath Proof Explorer


Theorem fzouzsplit

Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016)

Ref Expression
Assertion fzouzsplit B A A = A ..^ B B

Proof

Step Hyp Ref Expression
1 eluzelre B A B
2 eluzelre x A x
3 lelttric B x B x x < B
4 1 2 3 syl2an B A x A B x x < B
5 4 orcomd B A x A x < B B x
6 id x A x A
7 eluzelz B A B
8 elfzo2 x A ..^ B x A B x < B
9 df-3an x A B x < B x A B x < B
10 8 9 bitri x A ..^ B x A B x < B
11 10 baib x A B x A ..^ B x < B
12 6 7 11 syl2anr B A x A x A ..^ B x < B
13 eluzelz x A x
14 eluz B x x B B x
15 7 13 14 syl2an B A x A x B B x
16 12 15 orbi12d B A x A x A ..^ B x B x < B B x
17 5 16 mpbird B A x A x A ..^ B x B
18 17 ex B A x A x A ..^ B x B
19 elun x A ..^ B B x A ..^ B x B
20 18 19 syl6ibr B A x A x A ..^ B B
21 20 ssrdv B A A A ..^ B B
22 elfzouz x A ..^ B x A
23 22 ssriv A ..^ B A
24 23 a1i B A A ..^ B A
25 uzss B A B A
26 24 25 unssd B A A ..^ B B A
27 21 26 eqssd B A A = A ..^ B B