Metamath Proof Explorer


Theorem fzoval

Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzoval N M ..^ N = M N 1

Proof

Step Hyp Ref Expression
1 id m = M m = M
2 oveq1 n = N n 1 = N 1
3 1 2 oveqan12d m = M n = N m n 1 = M N 1
4 df-fzo ..^ = m , n m n 1
5 ovex M N 1 V
6 3 4 5 ovmpoa M N M ..^ N = M N 1
7 simpl M N M
8 fzof ..^ : × 𝒫
9 8 fdmi dom ..^ = ×
10 9 ndmov ¬ M N M ..^ N =
11 7 10 nsyl5 ¬ M M ..^ N =
12 simpl M N 1 M
13 fzf : × 𝒫
14 13 fdmi dom = ×
15 14 ndmov ¬ M N 1 M N 1 =
16 12 15 nsyl5 ¬ M M N 1 =
17 11 16 eqtr4d ¬ M M ..^ N = M N 1
18 17 adantr ¬ M N M ..^ N = M N 1
19 6 18 pm2.61ian N M ..^ N = M N 1