Metamath Proof Explorer


Theorem fzp1disj

Description: ( M ... ( N + 1 ) ) is the disjoint union of ( M ... N ) with { ( N + 1 ) } . (Contributed by Mario Carneiro, 7-Mar-2014)

Ref Expression
Assertion fzp1disj M N N + 1 =

Proof

Step Hyp Ref Expression
1 elfzle2 N + 1 M N N + 1 N
2 elfzel2 N + 1 M N N
3 2 zred N + 1 M N N
4 ltp1 N N < N + 1
5 peano2re N N + 1
6 ltnle N N + 1 N < N + 1 ¬ N + 1 N
7 5 6 mpdan N N < N + 1 ¬ N + 1 N
8 4 7 mpbid N ¬ N + 1 N
9 3 8 syl N + 1 M N ¬ N + 1 N
10 1 9 pm2.65i ¬ N + 1 M N
11 disjsn M N N + 1 = ¬ N + 1 M N
12 10 11 mpbir M N N + 1 =