Metamath Proof Explorer


Theorem fzp1elp1

Description: Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzp1elp1 K M N K + 1 M N + 1

Proof

Step Hyp Ref Expression
1 elfzuz K M N K M
2 peano2uz K M K + 1 M
3 1 2 syl K M N K + 1 M
4 elfzuz3 K M N N K
5 eluzp1p1 N K N + 1 K + 1
6 4 5 syl K M N N + 1 K + 1
7 elfzuzb K + 1 M N + 1 K + 1 M N + 1 K + 1
8 3 6 7 sylanbrc K M N K + 1 M N + 1