Metamath Proof Explorer


Theorem fzp1nel

Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Assertion fzp1nel ¬ N + 1 M N

Proof

Step Hyp Ref Expression
1 zre N N
2 ltp1 N N < N + 1
3 id N N
4 peano2re N N + 1
5 3 4 ltnled N N < N + 1 ¬ N + 1 N
6 2 5 mpbid N ¬ N + 1 N
7 1 6 syl N ¬ N + 1 N
8 7 intnand N ¬ M N + 1 N + 1 N
9 8 3ad2ant2 M N N + 1 ¬ M N + 1 N + 1 N
10 elfz2 N + 1 M N M N N + 1 M N + 1 N + 1 N
11 10 notbii ¬ N + 1 M N ¬ M N N + 1 M N + 1 N + 1 N
12 imnan M N N + 1 ¬ M N + 1 N + 1 N ¬ M N N + 1 M N + 1 N + 1 N
13 11 12 bitr4i ¬ N + 1 M N M N N + 1 ¬ M N + 1 N + 1 N
14 9 13 mpbir ¬ N + 1 M N