Metamath Proof Explorer


Theorem fzpr

Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fzpr M M M + 1 = M M + 1

Proof

Step Hyp Ref Expression
1 uzid M M M
2 elfzp1 M M m M M + 1 m M M m = M + 1
3 1 2 syl M m M M + 1 m M M m = M + 1
4 fzsn M M M = M
5 4 eleq2d M m M M m M
6 velsn m M m = M
7 5 6 bitrdi M m M M m = M
8 7 orbi1d M m M M m = M + 1 m = M m = M + 1
9 3 8 bitrd M m M M + 1 m = M m = M + 1
10 vex m V
11 10 elpr m M M + 1 m = M m = M + 1
12 9 11 bitr4di M m M M + 1 m M M + 1
13 12 eqrdv M M M + 1 = M M + 1