Metamath Proof Explorer


Theorem fzpred

Description: Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)

Ref Expression
Assertion fzpred N M M N = M M + 1 N

Proof

Step Hyp Ref Expression
1 eluzel2 N M M
2 uzid M M M
3 peano2uz M M M + 1 M
4 1 2 3 3syl N M M + 1 M
5 fzsplit2 M + 1 M N M M N = M M M + 1 N
6 4 5 mpancom N M M N = M M M + 1 N
7 fzsn M M M = M
8 1 7 syl N M M M = M
9 8 uneq1d N M M M M + 1 N = M M + 1 N
10 6 9 eqtrd N M M N = M M + 1 N