Metamath Proof Explorer


Theorem fzpreddisj

Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019)

Ref Expression
Assertion fzpreddisj N M M M + 1 N =

Proof

Step Hyp Ref Expression
1 incom M M + 1 N = M + 1 N M
2 0lt1 0 < 1
3 0re 0
4 1re 1
5 3 4 ltnlei 0 < 1 ¬ 1 0
6 2 5 mpbi ¬ 1 0
7 eluzel2 N M M
8 7 zred N M M
9 leaddle0 M 1 M + 1 M 1 0
10 8 4 9 sylancl N M M + 1 M 1 0
11 6 10 mtbiri N M ¬ M + 1 M
12 11 intnanrd N M ¬ M + 1 M M N
13 12 intnand N M ¬ M + 1 N M M + 1 M M N
14 elfz2 M M + 1 N M + 1 N M M + 1 M M N
15 13 14 sylnibr N M ¬ M M + 1 N
16 disjsn M + 1 N M = ¬ M M + 1 N
17 15 16 sylibr N M M + 1 N M =
18 1 17 eqtrid N M M M + 1 N =