Metamath Proof Explorer


Theorem fzprval

Description: Two ways of defining the first two values of a sequence on NN . (Contributed by NM, 5-Sep-2011)

Ref Expression
Assertion fzprval x 1 2 F x = if x = 1 A B F 1 = A F 2 = B

Proof

Step Hyp Ref Expression
1 fz12pr 1 2 = 1 2
2 1 raleqi x 1 2 F x = if x = 1 A B x 1 2 F x = if x = 1 A B
3 1ex 1 V
4 2ex 2 V
5 fveq2 x = 1 F x = F 1
6 iftrue x = 1 if x = 1 A B = A
7 5 6 eqeq12d x = 1 F x = if x = 1 A B F 1 = A
8 fveq2 x = 2 F x = F 2
9 1ne2 1 2
10 9 necomi 2 1
11 pm13.181 x = 2 2 1 x 1
12 10 11 mpan2 x = 2 x 1
13 12 neneqd x = 2 ¬ x = 1
14 13 iffalsed x = 2 if x = 1 A B = B
15 8 14 eqeq12d x = 2 F x = if x = 1 A B F 2 = B
16 3 4 7 15 ralpr x 1 2 F x = if x = 1 A B F 1 = A F 2 = B
17 2 16 bitri x 1 2 F x = if x = 1 A B F 1 = A F 2 = B