Metamath Proof Explorer


Theorem fzrev

Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)

Ref Expression
Assertion fzrev M N J K K J N J M J K M N

Proof

Step Hyp Ref Expression
1 zre J J
2 zre K K
3 zre N N
4 suble J K N J K N J N K
5 1 2 3 4 syl3an J K N J K N J N K
6 5 3comr N J K J K N J N K
7 6 3expb N J K J K N J N K
8 7 adantll M N J K J K N J N K
9 zre M M
10 lesub M J K M J K K J M
11 9 1 2 10 syl3an M J K M J K K J M
12 11 3expb M J K M J K K J M
13 12 adantlr M N J K M J K K J M
14 8 13 anbi12d M N J K J K N M J K J N K K J M
15 ancom J K N M J K M J K J K N
16 14 15 bitr3di M N J K J N K K J M M J K J K N
17 simprr M N J K K
18 zsubcl J N J N
19 18 ancoms N J J N
20 19 ad2ant2lr M N J K J N
21 zsubcl J M J M
22 21 ancoms M J J M
23 22 ad2ant2r M N J K J M
24 elfz K J N J M K J N J M J N K K J M
25 17 20 23 24 syl3anc M N J K K J N J M J N K K J M
26 zsubcl J K J K
27 26 adantl M N J K J K
28 simpll M N J K M
29 simplr M N J K N
30 elfz J K M N J K M N M J K J K N
31 27 28 29 30 syl3anc M N J K J K M N M J K J K N
32 16 25 31 3bitr4d M N J K K J N J M J K M N