Metamath Proof Explorer


Theorem fzrevral

Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)

Ref Expression
Assertion fzrevral M N K j M N φ k K N K M [˙K k / j]˙ φ

Proof

Step Hyp Ref Expression
1 simpr M N K k K N K M k K N K M
2 elfzelz k K N K M k
3 fzrev M N K k k K N K M K k M N
4 3 anassrs M N K k k K N K M K k M N
5 2 4 sylan2 M N K k K N K M k K N K M K k M N
6 1 5 mpbid M N K k K N K M K k M N
7 rspsbc K k M N j M N φ [˙K k / j]˙ φ
8 6 7 syl M N K k K N K M j M N φ [˙K k / j]˙ φ
9 8 ex3 M N K k K N K M j M N φ [˙K k / j]˙ φ
10 9 com23 M N K j M N φ k K N K M [˙K k / j]˙ φ
11 10 ralrimdv M N K j M N φ k K N K M [˙K k / j]˙ φ
12 nfv j K
13 nfcv _ j K N K M
14 nfsbc1v j [˙K k / j]˙ φ
15 13 14 nfralw j k K N K M [˙K k / j]˙ φ
16 fzrev2i K j M N K j K N K M
17 oveq2 k = K j K k = K K j
18 17 sbceq1d k = K j [˙K k / j]˙ φ [˙K K j / j]˙ φ
19 18 rspcv K j K N K M k K N K M [˙K k / j]˙ φ [˙K K j / j]˙ φ
20 16 19 syl K j M N k K N K M [˙K k / j]˙ φ [˙K K j / j]˙ φ
21 zcn K K
22 elfzelz j M N j
23 22 zcnd j M N j
24 nncan K j K K j = j
25 21 23 24 syl2an K j M N K K j = j
26 25 eqcomd K j M N j = K K j
27 sbceq1a j = K K j φ [˙K K j / j]˙ φ
28 26 27 syl K j M N φ [˙K K j / j]˙ φ
29 20 28 sylibrd K j M N k K N K M [˙K k / j]˙ φ φ
30 29 ex K j M N k K N K M [˙K k / j]˙ φ φ
31 30 com23 K k K N K M [˙K k / j]˙ φ j M N φ
32 12 15 31 ralrimd K k K N K M [˙K k / j]˙ φ j M N φ
33 32 3ad2ant3 M N K k K N K M [˙K k / j]˙ φ j M N φ
34 11 33 impbid M N K j M N φ k K N K M [˙K k / j]˙ φ