Metamath Proof Explorer


Theorem fzrevral2

Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)

Ref Expression
Assertion fzrevral2 MNKjKNKMφkMN[˙Kk/j]˙φ

Proof

Step Hyp Ref Expression
1 zsubcl KNKN
2 1 3adant2 KMNKN
3 zsubcl KMKM
4 3 3adant3 KMNKM
5 simp1 KMNK
6 fzrevral KNKMKjKNKMφkKKMKKN[˙Kk/j]˙φ
7 2 4 5 6 syl3anc KMNjKNKMφkKKMKKN[˙Kk/j]˙φ
8 zcn KK
9 zcn MM
10 zcn NN
11 nncan KMKKM=M
12 11 3adant3 KMNKKM=M
13 nncan KNKKN=N
14 13 3adant2 KMNKKN=N
15 12 14 oveq12d KMNKKMKKN=MN
16 8 9 10 15 syl3an KMNKKMKKN=MN
17 16 raleqdv KMNkKKMKKN[˙Kk/j]˙φkMN[˙Kk/j]˙φ
18 7 17 bitrd KMNjKNKMφkMN[˙Kk/j]˙φ
19 18 3coml MNKjKNKMφkMN[˙Kk/j]˙φ