Metamath Proof Explorer


Theorem fzrevral2

Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)

Ref Expression
Assertion fzrevral2 M N K j K N K M φ k M N [˙K k / j]˙ φ

Proof

Step Hyp Ref Expression
1 zsubcl K N K N
2 1 3adant2 K M N K N
3 zsubcl K M K M
4 3 3adant3 K M N K M
5 simp1 K M N K
6 fzrevral K N K M K j K N K M φ k K K M K K N [˙K k / j]˙ φ
7 2 4 5 6 syl3anc K M N j K N K M φ k K K M K K N [˙K k / j]˙ φ
8 zcn K K
9 zcn M M
10 zcn N N
11 nncan K M K K M = M
12 11 3adant3 K M N K K M = M
13 nncan K N K K N = N
14 13 3adant2 K M N K K N = N
15 12 14 oveq12d K M N K K M K K N = M N
16 8 9 10 15 syl3an K M N K K M K K N = M N
17 16 raleqdv K M N k K K M K K N [˙K k / j]˙ φ k M N [˙K k / j]˙ φ
18 7 17 bitrd K M N j K N K M φ k M N [˙K k / j]˙ φ
19 18 3coml M N K j K N K M φ k M N [˙K k / j]˙ φ