Metamath Proof Explorer


Theorem fzrevral3

Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 20-Nov-2005)

Ref Expression
Assertion fzrevral3 M N j M N φ k M N [˙M + N - k / j]˙ φ

Proof

Step Hyp Ref Expression
1 zaddcl M N M + N
2 fzrevral M N M + N j M N φ k M + N - N M + N - M [˙M + N - k / j]˙ φ
3 1 2 mpd3an3 M N j M N φ k M + N - N M + N - M [˙M + N - k / j]˙ φ
4 zcn M M
5 zcn N N
6 pncan M N M + N - N = M
7 pncan2 M N M + N - M = N
8 6 7 oveq12d M N M + N - N M + N - M = M N
9 4 5 8 syl2an M N M + N - N M + N - M = M N
10 9 raleqdv M N k M + N - N M + N - M [˙M + N - k / j]˙ φ k M N [˙M + N - k / j]˙ φ
11 3 10 bitrd M N j M N φ k M N [˙M + N - k / j]˙ φ