Metamath Proof Explorer


Theorem fzshftral

Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005)

Ref Expression
Assertion fzshftral M N K j M N φ k M + K N + K [˙k K / j]˙ φ

Proof

Step Hyp Ref Expression
1 0z 0
2 fzrevral M N 0 j M N φ x 0 N 0 M [˙ 0 x / j]˙ φ
3 1 2 mp3an3 M N j M N φ x 0 N 0 M [˙ 0 x / j]˙ φ
4 3 3adant3 M N K j M N φ x 0 N 0 M [˙ 0 x / j]˙ φ
5 zsubcl 0 N 0 N
6 1 5 mpan N 0 N
7 zsubcl 0 M 0 M
8 1 7 mpan M 0 M
9 id K K
10 fzrevral 0 N 0 M K x 0 N 0 M [˙ 0 x / j]˙ φ k K 0 M K 0 N [˙K k / x]˙ [˙ 0 x / j]˙ φ
11 6 8 9 10 syl3an N M K x 0 N 0 M [˙ 0 x / j]˙ φ k K 0 M K 0 N [˙K k / x]˙ [˙ 0 x / j]˙ φ
12 11 3com12 M N K x 0 N 0 M [˙ 0 x / j]˙ φ k K 0 M K 0 N [˙K k / x]˙ [˙ 0 x / j]˙ φ
13 ovex K k V
14 oveq2 x = K k 0 x = 0 K k
15 14 sbcco3gw K k V [˙K k / x]˙ [˙ 0 x / j]˙ φ [˙ 0 K k / j]˙ φ
16 13 15 ax-mp [˙K k / x]˙ [˙ 0 x / j]˙ φ [˙ 0 K k / j]˙ φ
17 16 ralbii k K 0 M K 0 N [˙K k / x]˙ [˙ 0 x / j]˙ φ k K 0 M K 0 N [˙ 0 K k / j]˙ φ
18 zcn M M
19 zcn N N
20 zcn K K
21 df-neg M = 0 M
22 21 oveq2i K -M = K 0 M
23 subneg K M K -M = K + M
24 addcom K M K + M = M + K
25 23 24 eqtrd K M K -M = M + K
26 22 25 eqtr3id K M K 0 M = M + K
27 26 3adant3 K M N K 0 M = M + K
28 df-neg N = 0 N
29 28 oveq2i K -N = K 0 N
30 subneg K N K -N = K + N
31 addcom K N K + N = N + K
32 30 31 eqtrd K N K -N = N + K
33 29 32 eqtr3id K N K 0 N = N + K
34 33 3adant2 K M N K 0 N = N + K
35 27 34 oveq12d K M N K 0 M K 0 N = M + K N + K
36 35 3coml M N K K 0 M K 0 N = M + K N + K
37 18 19 20 36 syl3an M N K K 0 M K 0 N = M + K N + K
38 37 raleqdv M N K k K 0 M K 0 N [˙ 0 K k / j]˙ φ k M + K N + K [˙ 0 K k / j]˙ φ
39 elfzelz k M + K N + K k
40 39 zcnd k M + K N + K k
41 df-neg K k = 0 K k
42 negsubdi2 K k K k = k K
43 41 42 eqtr3id K k 0 K k = k K
44 20 40 43 syl2an K k M + K N + K 0 K k = k K
45 44 sbceq1d K k M + K N + K [˙ 0 K k / j]˙ φ [˙k K / j]˙ φ
46 45 ralbidva K k M + K N + K [˙ 0 K k / j]˙ φ k M + K N + K [˙k K / j]˙ φ
47 46 3ad2ant3 M N K k M + K N + K [˙ 0 K k / j]˙ φ k M + K N + K [˙k K / j]˙ φ
48 38 47 bitrd M N K k K 0 M K 0 N [˙ 0 K k / j]˙ φ k M + K N + K [˙k K / j]˙ φ
49 17 48 syl5bb M N K k K 0 M K 0 N [˙K k / x]˙ [˙ 0 x / j]˙ φ k M + K N + K [˙k K / j]˙ φ
50 4 12 49 3bitrd M N K j M N φ k M + K N + K [˙k K / j]˙ φ