Metamath Proof Explorer


Theorem fzsn

Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fzsn M M M = M

Proof

Step Hyp Ref Expression
1 elfz1eq k M M k = M
2 elfz3 M M M M
3 eleq1 k = M k M M M M M
4 2 3 syl5ibrcom M k = M k M M
5 1 4 impbid2 M k M M k = M
6 velsn k M k = M
7 5 6 bitr4di M k M M k M
8 7 eqrdv M M M = M