Metamath Proof Explorer


Theorem fzsplit2

Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion fzsplit2 K + 1 M N K M N = M K K + 1 N

Proof

Step Hyp Ref Expression
1 elfzelz x M N x
2 1 zred x M N x
3 eluzel2 N K K
4 3 adantl K + 1 M N K K
5 4 zred K + 1 M N K K
6 lelttric x K x K K < x
7 2 5 6 syl2anr K + 1 M N K x M N x K K < x
8 elfzuz x M N x M
9 elfz5 x M K x M K x K
10 8 4 9 syl2anr K + 1 M N K x M N x M K x K
11 simpl K + 1 M N K K + 1 M
12 eluzelz K + 1 M K + 1
13 11 12 syl K + 1 M N K K + 1
14 eluz K + 1 x x K + 1 K + 1 x
15 13 1 14 syl2an K + 1 M N K x M N x K + 1 K + 1 x
16 elfzuz3 x M N N x
17 16 adantl K + 1 M N K x M N N x
18 elfzuzb x K + 1 N x K + 1 N x
19 18 rbaib N x x K + 1 N x K + 1
20 17 19 syl K + 1 M N K x M N x K + 1 N x K + 1
21 zltp1le K x K < x K + 1 x
22 4 1 21 syl2an K + 1 M N K x M N K < x K + 1 x
23 15 20 22 3bitr4d K + 1 M N K x M N x K + 1 N K < x
24 10 23 orbi12d K + 1 M N K x M N x M K x K + 1 N x K K < x
25 7 24 mpbird K + 1 M N K x M N x M K x K + 1 N
26 elfzuz x M K x M
27 26 adantl K + 1 M N K x M K x M
28 simpr K + 1 M N K N K
29 elfzuz3 x M K K x
30 uztrn N K K x N x
31 28 29 30 syl2an K + 1 M N K x M K N x
32 elfzuzb x M N x M N x
33 27 31 32 sylanbrc K + 1 M N K x M K x M N
34 elfzuz x K + 1 N x K + 1
35 uztrn x K + 1 K + 1 M x M
36 34 11 35 syl2anr K + 1 M N K x K + 1 N x M
37 elfzuz3 x K + 1 N N x
38 37 adantl K + 1 M N K x K + 1 N N x
39 36 38 32 sylanbrc K + 1 M N K x K + 1 N x M N
40 33 39 jaodan K + 1 M N K x M K x K + 1 N x M N
41 25 40 impbida K + 1 M N K x M N x M K x K + 1 N
42 elun x M K K + 1 N x M K x K + 1 N
43 41 42 bitr4di K + 1 M N K x M N x M K K + 1 N
44 43 eqrdv K + 1 M N K M N = M K K + 1 N