Metamath Proof Explorer


Theorem fzsplit3

Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017)

Ref Expression
Assertion fzsplit3 K M N M N = M K 1 K N

Proof

Step Hyp Ref Expression
1 elfzelz x M N x
2 1 zred x M N x
3 elfzelz K M N K
4 3 zred K M N K
5 1red K M N 1
6 4 5 resubcld K M N K 1
7 lelttric x K 1 x K 1 K 1 < x
8 2 6 7 syl2anr K M N x M N x K 1 K 1 < x
9 elfzuz x M N x M
10 1zzd K M N 1
11 3 10 zsubcld K M N K 1
12 elfz5 x M K 1 x M K 1 x K 1
13 9 11 12 syl2anr K M N x M N x M K 1 x K 1
14 elfzuz3 x M N N x
15 14 adantl K M N x M N N x
16 elfzuzb x K N x K N x
17 16 rbaib N x x K N x K
18 15 17 syl K M N x M N x K N x K
19 eluz K x x K K x
20 3 1 19 syl2an K M N x M N x K K x
21 zlem1lt K x K x K 1 < x
22 3 1 21 syl2an K M N x M N K x K 1 < x
23 18 20 22 3bitrd K M N x M N x K N K 1 < x
24 13 23 orbi12d K M N x M N x M K 1 x K N x K 1 K 1 < x
25 8 24 mpbird K M N x M N x M K 1 x K N
26 elfzuz x M K 1 x M
27 26 adantl K M N x M K 1 x M
28 elfzuz3 K M N N K
29 28 adantr K M N x M K 1 N K
30 elfzuz3 x M K 1 K 1 x
31 30 adantl K M N x M K 1 K 1 x
32 peano2uz K 1 x K - 1 + 1 x
33 31 32 syl K M N x M K 1 K - 1 + 1 x
34 4 recnd K M N K
35 5 recnd K M N 1
36 34 35 npcand K M N K - 1 + 1 = K
37 36 eleq1d K M N K - 1 + 1 x K x
38 37 adantr K M N x M K 1 K - 1 + 1 x K x
39 33 38 mpbid K M N x M K 1 K x
40 uztrn N K K x N x
41 29 39 40 syl2anc K M N x M K 1 N x
42 elfzuzb x M N x M N x
43 27 41 42 sylanbrc K M N x M K 1 x M N
44 elfzuz x K N x K
45 elfzuz K M N K M
46 uztrn x K K M x M
47 44 45 46 syl2anr K M N x K N x M
48 elfzuz3 x K N N x
49 48 adantl K M N x K N N x
50 47 49 42 sylanbrc K M N x K N x M N
51 43 50 jaodan K M N x M K 1 x K N x M N
52 25 51 impbida K M N x M N x M K 1 x K N
53 elun x M K 1 K N x M K 1 x K N
54 52 53 bitr4di K M N x M N x M K 1 K N
55 54 eqrdv K M N M N = M K 1 K N