Metamath Proof Explorer


Theorem fzsubel

Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005)

Ref Expression
Assertion fzsubel M N J K J M N J K M K N K

Proof

Step Hyp Ref Expression
1 znegcl K K
2 fzaddel M N J K J M N J + K M + K N + K
3 1 2 sylanr2 M N J K J M N J + K M + K N + K
4 zcn M M
5 zcn N N
6 4 5 anim12i M N M N
7 zcn J J
8 zcn K K
9 7 8 anim12i J K J K
10 negsub J K J + K = J K
11 10 adantl M N J K J + K = J K
12 negsub M K M + K = M K
13 negsub N K N + K = N K
14 12 13 oveqan12d M K N K M + K N + K = M K N K
15 14 anandirs M N K M + K N + K = M K N K
16 15 adantrl M N J K M + K N + K = M K N K
17 11 16 eleq12d M N J K J + K M + K N + K J K M K N K
18 6 9 17 syl2an M N J K J + K M + K N + K J K M K N K
19 3 18 bitrd M N J K J M N J K M K N K