Metamath Proof Explorer


Theorem fzsuc

Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzsuc N M M N + 1 = M N N + 1

Proof

Step Hyp Ref Expression
1 peano2uz N M N + 1 M
2 eluzfz2 N + 1 M N + 1 M N + 1
3 1 2 syl N M N + 1 M N + 1
4 peano2fzr N M N + 1 M N + 1 N M N + 1
5 3 4 mpdan N M N M N + 1
6 fzsplit N M N + 1 M N + 1 = M N N + 1 N + 1
7 5 6 syl N M M N + 1 = M N N + 1 N + 1
8 eluzelz N + 1 M N + 1
9 fzsn N + 1 N + 1 N + 1 = N + 1
10 1 8 9 3syl N M N + 1 N + 1 = N + 1
11 10 uneq2d N M M N N + 1 N + 1 = M N N + 1
12 7 11 eqtrd N M M N + 1 = M N N + 1