Metamath Proof Explorer


Theorem fzval2

Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion fzval2 M N M N = M N

Proof

Step Hyp Ref Expression
1 fzval M N M N = k | M k k N
2 zssre
3 ressxr *
4 2 3 sstri *
5 4 sseli M M *
6 4 sseli N N *
7 iccval M * N * M N = k * | M k k N
8 5 6 7 syl2an M N M N = k * | M k k N
9 8 ineq1d M N M N = k * | M k k N
10 inrab2 k * | M k k N = k * | M k k N
11 sseqin2 * * =
12 4 11 mpbi * =
13 12 rabeqi k * | M k k N = k | M k k N
14 10 13 eqtri k * | M k k N = k | M k k N
15 9 14 eqtr2di M N k | M k k N = M N
16 1 15 eqtrd M N M N = M N