Metamath Proof Explorer


Theorem gaass

Description: An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses gaass.1 X=BaseG
gaass.2 +˙=+G
Assertion gaass ˙GGrpActYAXBXCYA+˙B˙C=A˙B˙C

Proof

Step Hyp Ref Expression
1 gaass.1 X=BaseG
2 gaass.2 +˙=+G
3 eqid 0G=0G
4 1 2 3 isga ˙GGrpActYGGrpYV˙:X×YYxY0G˙x=xyXzXy+˙z˙x=y˙z˙x
5 4 simprbi ˙GGrpActY˙:X×YYxY0G˙x=xyXzXy+˙z˙x=y˙z˙x
6 simpr 0G˙x=xyXzXy+˙z˙x=y˙z˙xyXzXy+˙z˙x=y˙z˙x
7 6 ralimi xY0G˙x=xyXzXy+˙z˙x=y˙z˙xxYyXzXy+˙z˙x=y˙z˙x
8 5 7 simpl2im ˙GGrpActYxYyXzXy+˙z˙x=y˙z˙x
9 oveq2 x=Cy+˙z˙x=y+˙z˙C
10 oveq2 x=Cz˙x=z˙C
11 10 oveq2d x=Cy˙z˙x=y˙z˙C
12 9 11 eqeq12d x=Cy+˙z˙x=y˙z˙xy+˙z˙C=y˙z˙C
13 oveq1 y=Ay+˙z=A+˙z
14 13 oveq1d y=Ay+˙z˙C=A+˙z˙C
15 oveq1 y=Ay˙z˙C=A˙z˙C
16 14 15 eqeq12d y=Ay+˙z˙C=y˙z˙CA+˙z˙C=A˙z˙C
17 oveq2 z=BA+˙z=A+˙B
18 17 oveq1d z=BA+˙z˙C=A+˙B˙C
19 oveq1 z=Bz˙C=B˙C
20 19 oveq2d z=BA˙z˙C=A˙B˙C
21 18 20 eqeq12d z=BA+˙z˙C=A˙z˙CA+˙B˙C=A˙B˙C
22 12 16 21 rspc3v CYAXBXxYyXzXy+˙z˙x=y˙z˙xA+˙B˙C=A˙B˙C
23 8 22 syl5 CYAXBX˙GGrpActYA+˙B˙C=A˙B˙C
24 23 3coml AXBXCY˙GGrpActYA+˙B˙C=A˙B˙C
25 24 impcom ˙GGrpActYAXBXCYA+˙B˙C=A˙B˙C